Mixing processes in a zigzag microchannel: finite element simulations and optical study.

نویسندگان

  • Virginie Mengeaud
  • Jacques Josserand
  • Hubert H Girault
چکیده

A finite element model has been used in order to study the mixing process of species in a 100-microm-wide zigzag microchannel integrating a "Y" inlet junction. The distribution of the concentration was obtained by solving successively the Navier-Stokes equation and the diffusion-convection equation in the steady state form. Because of the large range of Reynolds numbers studied (1 < Re < 800), the 2D diffusion-convection simulations are carried out with high diffusion coefficients. The results illustrated the effects of both flow rate and channel geometry on hydrodynamics and mixing efficiency. Below a critical Reynolds number of approximately 80, the mixing is entirely ensured by molecular diffusion. For higher Reynolds numbers, simulations revealed the mixing contribution of laminar flow recirculations. This effect increases for lower values of diffusion coefficients. Experimental studies on the mixing of species at different flow rates are reported showing the same hydrodynamic tendency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and fabrication of an effective micromixer through passive method

Micromixer is a significant component of microfluidics particularly in lab-on-chip applications so that there has been a growing need for design and fabrication of micromixers with a shorter length and higher efficiency. Despite most of the passive micromixers that suffer from long mixing path and complicated geometry to increase the efficiency, our novel design suggests a highly efficient micr...

متن کامل

Thermal Vibration of Composites and Sandwich Laminates Using Refined Higher Order Zigzag Theory

Vibration of laminated composite and sandwich plate under thermal loading is studied in this paper. A refined higher order theory has been used for the purpose. In order to avoid stress oscillations observed in the implementation of a displacement based finite element, the stress field derived from temperature (initial strains) have been made consistent with total strain field. So far no study ...

متن کامل

A numerical study of droplet deformation in a flat funnelform microchannel

Motivated by recent reported experiments, droplet deformation in a flat funnelform diverging microfluidic channel has been numerically studied. The structure of our microchannel is composed of two consecutive elements including a straight channel and a diverging channel. In this work, instead of solving the 3D Stokes equation, we solve a depth-averaged problem which is labeled two-dimensional p...

متن کامل

Finite element simulation of two-point incremental forming of free-form parts

Two-point incremental forming method is considered a modern technique for manufacturing shell parts. The presence of bottom punch during the process makes this technique far more complex than its conventional counterpart i.e. single-point incremental forming method. Thus, the numerical simulation of this method is an essential task, which leads to the reduction of trial/error costs, predicts th...

متن کامل

Flow field, heat transfer and entropy generation of nanofluid in a microchannel using the finite volume method

In this study, the finite volume method and the SIMPLER algorithm is employed to investigate forced convection and entropy generation of Cu-water nanofluid in a parallel plate microchannel. There are four obstacles through the microchannel, and the slip velocity and temperature jump boundary conditions are considered in the governing equations to increase the accuracy of modeling. The study is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 74 16  شماره 

صفحات  -

تاریخ انتشار 2002